
The Halting Problems of Network Stack Insecurity
Original paper1 by Len Sassaman, Meredith L. Patterson,

Sergey Bratus and Anna Shubina

Pierre Pavlidès

University of Birmingham - School of Computer Science
Tom Chothia’s Internet Security Seminar module

15 March 2013

1;login: The USENIX Magazine, vol. 36, no. 6, December 2011
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-
problems-network-stack-insecurity

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 1 / 42

https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-problems-network-stack-insecurity
https://www.usenix.org/publications/login/december-2011-volume-36-number-6/halting-problems-network-stack-insecurity

Before we start

These slides can be downloaded at the following address:

http://r.rogdham.net/17

This work is released under the CC By-Sa 3.0 licence.

♥ Copying is an act of love. Please copy and share. See copyheart.org

However some of the images are not; they are used as illustrations thanks to the right to quote.

The full description of the images (including authors and license) is available at the end of this

presentation. Indeed, in most of the cases, putting the description next to the image would be

given the answer to the questions I may ask during the presentation.

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 2 / 42

http://r.rogdham.net/17
http:///copyheart.org/

Agenda

1 Language theory in a nutshell

2 Model of the network stack. . . getting weird

3 Principles of secure design

4 Conclusion

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 3 / 42

Agenda

1 Language theory in a nutshell

2 Model of the network stack. . . getting weird

3 Principles of secure design

4 Conclusion

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 4 / 42

What is a language?

Natural languages
English
Sign languages

Constructed languages
Esperanto
Tolkien’s Elvish languages

Programming languages
C, Python, Java, Haskell, Piet

What about encodings? Data formats?
HTML, Base64, JSON, PNG

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 5 / 42

What can possibly go wrong?

Dialects
English, Sign languages
ANSI C: C89. . . C11

Ambiguities
“not bad”
“ice cream” / “I scream”

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 6 / 42

Moving to language theory

We need a formal description of a language (read “mathematics”).

And then tools to work on languages:

recogniser
I does a word belong to a language?
I this is an equivalent way to describe a language

parsers
I analysing a word of the language, extracting some meaning
I usually easy once you have the recogniser

Any example of recogniser or parser?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 7 / 42

Recognizer and parser example: email addresses

Recogniser: REGEX

if(preg_match(
'/^[a-z0 -9_.-]+@[a-z0 -9. -]+\.[a-z0 -9-]{2 ,4}$/',
$email)) {

echo 'Valid email address.';
}

Parser: just add capturing groups!

m = re.match(
r'^(?P<user >[a-z0 -9_.-]+)@'
r'(?P<domain >[a-z0 -9. -]+\.[a-z0 -9 -]{2 ,4})$',
email)

if m and m.group('domain ') == 'bham.ac.uk':
print 'Hello , %s!' % m.group('user')

Note: over-simplified REGEX here, do not use it in real life!
Pierre Pavlidès The Halting Problems of Network Stack Insecurity 8 / 42

Some formalism

Definition (Alphabet)
An alphabet is a finite set Σ of symbols.

Definition (Word)
A word is a finite sequence α of symbols over an alphabet Σ (α ∈ Σ∗).

A word can contain spaces!
Notation for the empty word: ε.

Definition (Language)
A language is a set L of words over an alphabet Σ (i.e. L ⊆ Σ∗).

A language can contain an infinite number of words (e.g. Σ∗).

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 9 / 42

Chomsky hierarchy

Chomsky hierarchy

Classes of languages
Regular to recursively
enumerable

How easy it is to recognise a
word
How expressive you can be

This paper: how secure your
application would be

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 10 / 42

Regular

Summary:
REGEX
(Deterministic) finite state
automaton

Example:
multiples of 3 written in binary

REGEX: /^(0|(1(01*0)*1))+$/
DFSA:

C D

BA

0

1

0

1
0

1

0

1

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 11 / 42

Limit of regular languages

Chomsky hierarchy

Many languages are not regular
L = {αnβn|n ∈ N}

Do you think HTML is regular?

We have other categories of
languages!

need more context

I will go directly to recursively
enumerable languages.

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 12 / 42

Recursively enumerable languages

Turing machine
very simple computer; but infinite storage
tape, head, state register, action table

Recursively enumerable languages
there exists a Turing machine, which, given a word, will

I halt and accept if part of the language
I either halt and reject or never halt otherwise

there exists a Turing machine which will enumerate all the words of
the language

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 13 / 42

Halting problem

Given a Turing machine and an input, tell if the machine will eventually
halt if run with that input

undecidable

basically, you have no choice but to run the machine
I wait some time
I if the machine halts, fine
I else?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 14 / 42

Chomsky hierarchy again

Chomsky hierarchy

Each class of language is included in
the next one

can handle new languages
needs more computational power

Grey region: equivalence between two
machines is decidable

For each class of language there is a
machine which required just the
computational power needed

Which one would be more useful to
an attacker?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 15 / 42

Agenda

1 Language theory in a nutshell

2 Model of the network stack. . . getting weird

3 Principles of secure design

4 Conclusion

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 16 / 42

Model of a program

input
input

parsing
core

computations
output
crafting

output

What does a program do?
take some input
parse it
do some computation
create the output
send the output

This model includes:
application inputs
network stack inputs
mono-block applications
multi-blocks applications

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 17 / 42

Input parsing matters

input
input

parsing
core

computations
output
crafting

output

The paper focus is on input parsing
does not covers all security problems
but a lot of them are covered!

Remember2 Chrome locking the rendering engine (including input parsing)
inside a sandbox?

2Adam Barth and al., The Security Architecture of the Chromium Browser
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 18 / 42

http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf

In the real world

How input parsing is done in the real world?

spread in the code

handwritten recognisers
I faulty

usually REGEX
I of course, not just for regular

languages
I easy to get wrong

Are open standards helping?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 19 / 42

RFC 793: TCP

“NOTE BENE: this diagram is
only a summary and must not
be taken as the total
specification.”

Where is the problem?
no BNF
manually implemented
each implementation is
different

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 20 / 42

Are RFC helping?

What if. . . we don’t use them?

$ man 7 tcp
Linux uses the BSD compatible interpretation of the urgent pointer field by
default. This violates RFC 1122, but is required for interoperability with
other stacks. It can be changed via /proc/sys/net/ipv4/tcp_stdurg.

So what do we have?
Various implementations
Different behaviours

How can this be used?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 21 / 42

Exploiting different parsers for the same protocol

Fingerprinting
detect differences in
implementations (dialects)
xprobe, nmap. . .

Real exploits
use differences in
implementations
IDS evasion
0day hunting using. . .

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 22 / 42

Parse tree differential analysis

Chomsky hierarchy

Pick different parsers of the same
protocol

compare their parse tree
if they are different, you
probably have a 0 day

Outside the grey area, automaton
equivalence is undecidable

but we can still find differences!

Result
they found clusters of 0 days
let’s look at an example

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 23 / 42

Example: exploit on X.509 parsing (2009)

Craft a certificate with

CN=www.mywebsite.com/CN=www.bank.com/CN=*

OpenSSL parser was only considering www.mywebsite.com

used by CA to sign the certificate

IE parser was only considering www.bank.com

you just got a signed certificate for www.bank.com
MITM on SSL connections

Firefox was only considering * (i.e. all possible names)
all your base are belong to us

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 24 / 42

Back to our model

input
input

parsing
core

computations
output
crafting

output

Assume that there is a vulnerability in the input parser.

What will you do as an attacker?

craft specific inputs that exploit this vulnerability
take control of the machine running the parser
perform arbitrary computations

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 25 / 42

A weird machine rears its head

input
input

parsing
core

computations
output
crafting

output

output

Formalising:
using an unexpected
language having
side-effects
exploiting the weird
machine

You have already done that. . .
Particularly true for the
following:

(blind) SQL injection
ROP!!!

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 26 / 42

Mitigating weird machine exploitation

Don’t give to the parser more computational
power than needed

the attacker will be less powerful

FGPA / correctness proof

Obviously, only works if the parser does not need
to be Turing-complete. . .

Do you think it is practical?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 27 / 42

Agenda

1 Language theory in a nutshell

2 Model of the network stack. . . getting weird

3 Principles of secure design

4 Conclusion

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 28 / 42

Principles of secure design

Definition (Principle 1)
Request and grant minimal computational power

Definition (Principle 2)
Secure composition requires parser computational equivalence

Ok, what does that mean?

What are you supposed to do:
when you implement a protocol?
when you design a protocol?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 29 / 42

Principle of secure design for implementation

Definition (Principle 1)
Request and grant minimal computational power

If a weird machine appears, at least the damages
are limited (if any)

Definition (Principle 2)
Secure composition requires parser computational equivalence

What does it means here? Makes the review easier:
create the parser automatically from the BNF of the protocol (if any)
isolate the input parsing from the rest of your program

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 30 / 42

Principle 1 of secure design for protocol design

Definition (Principle 1)
Request and grant minimal computational power

How much power does your protocol really needs?

do you really needs those length fields?
I would make your protocol at least context-sensitive
I could you use S-expressions instead? (context-free)

Avoid the halting problem of network stack insecurity
don’t create recursively enumerable protocols
otherwise parsing is undecidable

It’s easy to give too much computational power
PDFs have build-in JS support
HTML + CSS3 is (very close) to Turing-completeness

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 31 / 42

Rule 110

What is Rule 110?
you have a infinite array filled
with 0s and 1s
at each iteration, change each
cell n depending on the values of
cells (n − 1, n, n + 1) of the
previous iteration
is Turing-complete

Implementation of Rule 110 in HTML + CSS3
needs some basic interaction from the user
is obviously not working on infinite arrays
so HTML + CSS3 is almost Turing-complete
https://github.com/elitheeli/stupid-machines/blob/master/rule110/rule110-full.html

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 32 / 42

https://github.com/elitheeli/stupid-machines/blob/master/rule110/rule110-full.html

Principle 2 of secure design for protocol design

Definition (Principle 2)
Secure composition requires parser computational equivalence

Chomsky hierarchy

Parser equivalence is only possible to
check for the grey categories

see principle 1

Create BNF of your protocol
so that implementations can use
them
and checking computational
equivalence is easier

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 33 / 42

About Postel’s law

Definition (Postel’s law (or robustness principle), from RFC 793)
Be conservative in what you do, be liberal in what you accept from others.

Trade security for laziness

Goes against principle 2 (no equivalence between parsers)

It’s even easier to use a very strict input parser, if we have the
corresponding BNF

Was from 1981. . . maybe it’s time to patch it?

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 34 / 42

The Postel’s law patch

−−− ietf / postels−principle
+++ ietf / postels−principle
− Be liberal about what you accept .
+ Be definite about what you accept . (∗)
+
+ Treat inputs as a language , accept it with a matching c o m p u t a t i o n a l
+ power , generate its recognizer from its grammar .
+
+ Treat input−handling c o m p u t a t i o n a l power as privilege , and reduce it
+ whenever possible .
+
+
+ (∗) For the sake of your users , be definite about what you accept .
+ Being liberal worked best for simpler protocols and languages ,
+ and is in fact limited to such languages ; be sure to keep your
+ language regular or at most context free (no length fields) .
+ Being more liberal did not work so well for early IPv4 stacks :
+ they were initially vulnerable to weak packet parser attacks , and
+ ended up eliminating many options and features from normal use .
+ Furthermore , presence of these options in traffic came to be regarded
+ as a sign of suspicious or malicious activities , to be mitigated by
+ traffic n o r m a l i z a t i o n or outright rejection . At current protocol
+ complexities , being liberal actually means exposing the users of your
+ software to intractable or malicious c o m p u t a t i o n s .

http://www.cs.dartmouth.edu/∼sergey/langsec/postel-principle-patch.txt
Pierre Pavlidès The Halting Problems of Network Stack Insecurity 35 / 42

http://www.cs.dartmouth.edu/~sergey/langsec/postel-principle-patch.txt

Agenda

1 Language theory in a nutshell

2 Model of the network stack. . . getting weird

3 Principles of secure design

4 Conclusion

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 36 / 42

What have we done so far

Formalise network stack
(partial) explanation of
fingerprinting
method to find 0 days (parse
tree differential analysis)

Principles of secure design
for protocol designs
for parser implementations

let’s just walk through them
again

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 37 / 42

Principle 0: full recognition before processing

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 38 / 42

Principle 1: minimal computational power

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 39 / 42

Principle 2: parser computational equivalence

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 40 / 42

List of images used

By order of apparition:

CC logo by Creative Commons under the public domain http://en.wikipedia.org/wiki/File:Cc.logo.circle.svg

CC By logo by Sting under CC By 2.5 http://en.wikipedia.org/wiki/File:Cc-by_new.svg

CC Sa logo by Creative Commons under CC By http://en.wikipedia.org/wiki/File:Cc-sa.svg

Picture of Emmanuelle Laborit by Penelope1967 under copyright
http://www.youtube.com/watch?v=HhCXZ2IX6uQ

Piet program by Thomas Schoch under GFDL and CC By-Sa-3.0
http://commons.wikimedia.org/wiki/File:Piet_Program.gif

The Tower of Babel by Pieter Bruegel the Elder under the public domain
http://en.wikipedia.org/wiki/File:Pieter_Bruegel_the_Elder_-_The_Tower_of_Babel_(Vienna)_-
_Google_Art_Project_-_edited.jpg

Chomsky hierarchy from the original paper (see first page)

Model of Turing machine by Rocky Acosta under CC By
http://commons.wikimedia.org/wiki/File:Turing_Machine_Model_Davey_2012.jpg

Abstruse Goose comic about the halting problem under CC By Nc http://abstrusegoose.com/440

Chuck Noris meme by Memegenerator http://memegenerator.net/instance/34260152

Who I really am by Tucia under CC By http://www.flickr.com/photos/tucia/4649549850/

Rule 110 image fby Eric Weisstein from MathWorld –A Wolfram Web Resource
http://mathworld.wolfram.com/Rule110.html

Occupy LangSec images by Kythera of Anevern http://www.cs.dartmouth.edu/∼sergey/langsec/occupy/

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 41 / 42

http://en.wikipedia.org/wiki/File:Cc.logo.circle.svg
http://en.wikipedia.org/wiki/File:Cc-by_new.svg
http://en.wikipedia.org/wiki/File:Cc-sa.svg
http://www.youtube.com/watch?v=HhCXZ2IX6uQ
http://commons.wikimedia.org/wiki/File:Piet_Program.gif
http://en.wikipedia.org/wiki/File:Pieter_Bruegel_the_Elder_-_The_Tower_of_Babel_(Vienna)_-_Google_Art_Project_-_edited.jpg
http://en.wikipedia.org/wiki/File:Pieter_Bruegel_the_Elder_-_The_Tower_of_Babel_(Vienna)_-_Google_Art_Project_-_edited.jpg
http://commons.wikimedia.org/wiki/File:Turing_Machine_Model_Davey_2012.jpg
http://abstrusegoose.com/440
http://memegenerator.net/instance/34260152
http://www.flickr.com/photos/tucia/4649549850/
http://mathworld.wolfram.com/Rule110.html
http://www.cs.dartmouth.edu/~sergey/langsec/occupy/

For science. . . you weird machine

Want more? langsec.org

Q&A time!

Pierre Pavlidès The Halting Problems of Network Stack Insecurity 42 / 42

http://langsec.org/

	Language theory in a nutshell
	Model of the network stack… getting weird
	Principles of secure design
	Conclusion

